martes, 9 de mayo de 2017

Tutorial de Linux 2

2.1 Copying Files

cp (copy)

cp file1 file2 is the command which makes a copy of file1 in the current working directory and calls it file2
What we are going to do now, is to take a file stored in an open access area of the file system, and use the cp command to copy it to your unixstuff directory.
First, cd to your unixstuff directory.
% cd ~/unixstuff
Then at the UNIX prompt, type,
% cp /vol/examples/tutorial/science.txt .
Note: Don't forget the dot . at the end. Remember, in UNIX, the dot means the current directory.
The above command means copy the file science.txt to the current directory, keeping the name the same.
(Note: The directory /vol/examples/tutorial/ is an area to which everyone in the school has read and copy access. If you are from outside the University, you can grab a copy of the file here. Use 'File/Save As..' from the menu bar to save it into your unixstuff directory.)

Exercise 2a

Create a backup of your science.txt file by copying it to a file called science.bak

2.2 Moving files

mv (move)

mv file1 file2 moves (or renames) file1 to file2
To move a file from one place to another, use the mv command. This has the effect of moving rather than copying the file, so you end up with only one file rather than two.
It can also be used to rename a file, by moving the file to the same directory, but giving it a different name.
We are now going to move the file science.bak to your backup directory.
First, change directories to your unixstuff directory (can you remember how?). Then, inside the unixstuff directory, type
% mv science.bak backups/.
Type ls and ls backups to see if it has worked.

2.3 Removing files and directories

rm (remove), rmdir (remove directory)

To delete (remove) a file, use the rm command. As an example, we are going to create a copy of the science.txt file then delete it.
Inside your unixstuff directory, type
% cp science.txt tempfile.txt
% ls
% rm tempfile.txt
% ls
You can use the rmdir command to remove a directory (make sure it is empty first). Try to remove the backups directory. You will not be able to since UNIX will not let you remove a non-empty directory.

Exercise 2b

Create a directory called tempstuff using mkdir , then remove it using the rmdir command.

2.4 Displaying the contents of a file on the screen

clear (clear screen)

Before you start the next section, you may like to clear the terminal window of the previous commands so the output of the following commands can be clearly understood.
At the prompt, type
% clear
This will clear all text and leave you with the % prompt at the top of the window.

cat (concatenate)

The command cat can be used to display the contents of a file on the screen. Type:
% cat science.txt
As you can see, the file is longer than than the size of the window, so it scrolls past making it unreadable.

less

The command less writes the contents of a file onto the screen a page at a time. Type
% less science.txt
Press the [space-bar] if you want to see another page, and type [q] if you want to quit reading. As you can see, less is used in preference to cat for long files.

head

The head command writes the first ten lines of a file to the screen.
First clear the screen then type
% head science.txt
Then type
% head -5 science.txt
What difference did the -5 do to the head command?

tail

The tail command writes the last ten lines of a file to the screen.
Clear the screen and type
% tail science.txt
Q. How can you view the last 15 lines of the file?

2.5 Searching the contents of a file

Simple searching using less

Using less, you can search though a text file for a keyword (pattern). For example, to search through science.txt for the word 'science', type
% less science.txt
then, still in less, type a forward slash [/] followed by the word to search
/science
As you can see, less finds and highlights the keyword. Type [n] to search for the next occurrence of the word.

grep (don't ask why it is called grep)

grep is one of many standard UNIX utilities. It searches files for specified words or patterns. First clear the screen, then type
% grep science science.txt
As you can see, grep has printed out each line containg the word science.
Or has it ????
Try typing
% grep Science science.txt
The grep command is case sensitive; it distinguishes between Science and science.
To ignore upper/lower case distinctions, use the -i option, i.e. type
% grep -i science science.txt
To search for a phrase or pattern, you must enclose it in single quotes (the apostrophe symbol). For example to search for spinning top, type
% grep -i 'spinning top' science.txt
Some of the other options of grep are:
-v display those lines that do NOT match
-n precede each matching line with the line number
-c print only the total count of matched lines

Try some of them and see the different results. Don't forget, you can use more than one option at a time. For example, the number of lines without the words science or Science is
% grep -ivc science science.txt

wc (word count)

A handy little utility is the wc command, short for word count. To do a word count on science.txt, type
% wc -w science.txt
To find out how many lines the file has, type
% wc -l science.txt

Summary

Command Meaning
cp file1 file2 copy file1 and call it file2
mv file1 file2 move or rename file1 to file2
rm file remove a file
rmdir directory remove a directory
cat file display a file
less file display a file a page at a time
head file display the first few lines of a file
tail file display the last few lines of a file
grep 'keyword' file search a file for keywords
wc file count number of lines/words/characters in file



3.1 Redirection  

Most processes initiated by UNIX commands write to the standard output (that is, they write to the terminal screen), and many take their input from the standard input (that is, they read it from the keyboard). There is also the standard error, where processes write their error messages, by default, to the terminal screen.
We have already seen one use of the cat command to write the contents of a file to the screen.
Now type cat without specifing a file to read
% cat
Then type a few words on the keyboard and press the [Return] key.
Finally hold the [Ctrl] key down and press [d] (written as ^D for short) to end the input.
What has happened?
If you run the cat command without specifing a file to read, it reads the standard input (the keyboard), and on receiving the 'end of file' (^D), copies it to the standard output (the screen).
In UNIX, we can redirect both the input and the output of commands.

3.2 Redirecting the Output  

We use the > symbol to redirect the output of a command. For example, to create a file called list1 containing a list of fruit, type  
% cat > list1
Then type in the names of some fruit. Press [Return] after each one.
pear
banana
apple
^D {this means press [Ctrl] and [d] to stop}
What happens is the cat command reads the standard input (the keyboard) and the > redirects the output, which normally goes to the screen, into a file called list1
To read the contents of the file, type
% cat list1

Exercise 3a

Using the above method, create another file called list2 containing the following fruit: orange, plum, mango, grapefruit. Read the contents of list2

3.2.1 Appending to a file

The form >> appends standard output to a file. So to add more items to the file list1, type
% cat >> list1
Then type in the names of more fruit
peach
grape
orange
^D (Control D to stop)
To read the contents of the file, type
% cat list1
You should now have two files. One contains six fruit, the other contains four fruit.
We will now use the cat command to join (concatenate) list1 and list2 into a new file called biglist. Type
% cat list1 list2 > biglist
What this is doing is reading the contents of list1 and list2 in turn, then outputing the text to the file biglist
To read the contents of the new file, type
% cat biglist

3.3 Redirecting the Input  

We use the < symbol to redirect the input of a command.
The command sort alphabetically or numerically sorts a list. Type
% sort
Then type in the names of some animals. Press [Return] after each one.
dog
cat
bird
ape
^D (control d to stop)
The output will be
ape
bird
cat
dog
Using < you can redirect the input to come from a file rather than the keyboard. For example, to sort the list of fruit, type
% sort < biglist
and the sorted list will be output to the screen.
To output the sorted list to a file, type,
% sort < biglist > slist
Use cat to read the contents of the file slist

3.4 Pipes

To see who is on the system with you, type
% who
One method to get a sorted list of names is to type,
% who > names.txt
% sort < names.txt
This is a bit slow and you have to remember to remove the temporary file called names when you have finished. What you really want to do is connect the output of the who command directly to the input of the sort command. This is exactly what pipes do. The symbol for a pipe is the vertical bar |
For example, typing
% who | sort
will give the same result as above, but quicker and cleaner.
To find out how many users are logged on, type
% who | wc -l

Exercise 3b

Using pipes, display all lines of list1 and list2 containing the letter 'p', and sort the result.
Answer available here

Summary

Command Meaning
command > file redirect standard output to a file
command >> file append standard output to a file
command < file redirect standard input from a file
command1 | command2 pipe the output of command1 to the input of command2
cat file1 file2 > file0 concatenate file1 and file2 to file0
sort sort data
who list users currently logged in

UNIX Tutorial Four

4.1 Wildcards

The * wildcard

The character * is called a wildcard, and will match against none or more character(s) in a file (or directory) name. For example, in your unixstuff directory, type
% ls list*
This will list all files in the current directory starting with list....
Try typing
% ls *list
This will list all files in the current directory ending with ....list

The ? wildcard

The character ? will match exactly one character.
So ?ouse will match files like house and mouse, but not grouse.
Try typing
% ls ?list

4.2 Filename conventions

We should note here that a directory is merely a special type of file. So the rules and conventions for naming files apply also to directories.
In naming files, characters with special meanings such as / * & % , should be avoided. Also, avoid using spaces within names. The safest way to name a file is to use only alphanumeric characters, that is, letters and numbers, together with _ (underscore) and . (dot).
Good filenames Bad filenames
project.txt project
my_big_program.c my big program.c
fred_dave.doc fred & dave.doc
File names conventionally start with a lower-case letter, and may end with a dot followed by a group of letters indicating the contents of the file. For example, all files consisting of C code may be named with the ending .c, for example, prog1.c . Then in order to list all files containing C code in your home directory, you need only type ls *.c in that directory.

4.3 Getting Help

On-line Manuals

There are on-line manuals which gives information about most commands. The manual pages tell you which options a particular command can take, and how each option modifies the behaviour of the command. Type man command to read the manual page for a particular command.
For example, to find out more about the wc (word count) command, type
% man wc
Alternatively
% whatis wc
gives a one-line description of the command, but omits any information about options etc.

Apropos

When you are not sure of the exact name of a command,
% apropos keyword
will give you the commands with keyword in their manual page header. For example, try typing
% apropos copy

Summary

Command Meaning
* match any number of characters
? match one character
man command read the online manual page for a command
whatis command brief description of a command
apropos keyword match commands with keyword in their man pages


5.1 File system security (access rights)

In your unixstuff directory, type
% ls -l (l for long listing!)
You will see that you now get lots of details about the contents of your directory, similar to the example below.
File and directory access rights
Each file (and directory) has associated access rights, which may be found by typing ls -l. Also, ls -lg gives additional information as to which group owns the file (beng95 in the following example):
-rwxrw-r-- 1 ee51ab beng95 2450 Sept29 11:52 file1
In the left-hand column is a 10 symbol string consisting of the symbols d, r, w, x, -, and, occasionally, s or S. If d is present, it will be at the left hand end of the string, and indicates a directory: otherwise - will be the starting symbol of the string.
The 9 remaining symbols indicate the permissions, or access rights, and are taken as three groups of 3.
  • The left group of 3 gives the file permissions for the user that owns the file (or directory) (ee51ab in the above example);
  • the middle group gives the permissions for the group of people to whom the file (or directory) belongs (eebeng95 in the above example);
  • the rightmost group gives the permissions for all others.
The symbols r, w, etc., have slightly different meanings depending on whether they refer to a simple file or to a directory.

Access rights on files.

  • r (or -), indicates read permission (or otherwise), that is, the presence or absence of permission to read and copy the file
  • w (or -), indicates write permission (or otherwise), that is, the permission (or otherwise) to change a file
  • x (or -), indicates execution permission (or otherwise), that is, the permission to execute a file, where appropriate

Access rights on directories.

  • r allows users to list files in the directory;
  • w means that users may delete files from the directory or move files into it;
  • x means the right to access files in the directory. This implies that you may read files in the directory provided you have read permission on the individual files.
So, in order to read a file, you must have execute permission on the directory containing that file, and hence on any directory containing that directory as a subdirectory, and so on, up the tree.

Some examples

-rwxrwxrwx a file that everyone can read, write and execute (and delete).
-rw------- a file that only the owner can read and write - no-one else
can read or write and no-one has execution rights (e.g. your
mailbox file).

5.2 Changing access rights

chmod (changing a file mode)

Only the owner of a file can use chmod to change the permissions of a file. The options of chmod are as follows
Symbol Meaning
u
user
g
group
o
other
a
all
r
read
w
write (and delete)
x
execute (and access directory)
+
add permission
-
take away permission
For example, to remove read write and execute permissions on the file biglist for the group and others, type
% chmod go-rwx biglist
This will leave the other permissions unaffected.
To give read and write permissions on the file biglist to all,
% chmod a+rw biglist

Exercise 5a

Try changing access permissions on the file science.txt and on the directory backups
Use ls -l to check that the permissions have changed.

5.3 Processes and Jobs

A process is an executing program identified by a unique PID (process identifier). To see information about your processes, with their associated PID and status, type
% ps
A process may be in the foreground, in the background, or be suspended. In general the shell does not return the UNIX prompt until the current process has finished executing.
Some processes take a long time to run and hold up the terminal. Backgrounding a long process has the effect that the UNIX prompt is returned immediately, and other tasks can be carried out while the original process continues executing.

Running background processes

To background a process, type an & at the end of the command line. For example, the command sleep waits a given number of seconds before continuing. Type
% sleep 10
This will wait 10 seconds before returning the command prompt %. Until the command prompt is returned, you can do nothing except wait.
To run sleep in the background, type
% sleep 10 &
[1] 6259
The & runs the job in the background and returns the prompt straight away, allowing you do run other programs while waiting for that one to finish.
The first line in the above example is typed in by the user; the next line, indicating job number and PID, is returned by the machine. The user is be notified of a job number (numbered from 1) enclosed in square brackets, together with a PID and is notified when a background process is finished. Backgrounding is useful for jobs which will take a long time to complete.

Backgrounding a current foreground process

At the prompt, type
% sleep 1000
You can suspend the process running in the foreground by typing ^Z, i.e.hold down the [Ctrl] key and type [z]. Then to put it in the background, type
% bg
Note: do not background programs that require user interaction e.g. vi

5.4 Listing suspended and background processes

When a process is running, backgrounded or suspended, it will be entered onto a list along with a job number. To examine this list, type
% jobs
An example of a job list could be
[1] Suspended sleep 1000
[2] Running netscape
[3] Running matlab
To restart (foreground) a suspended processes, type
% fg %jobnumber
For example, to restart sleep 1000, type
% fg %1
Typing fg with no job number foregrounds the last suspended process.

5.5 Killing a process

kill (terminate or signal a process)

It is sometimes necessary to kill a process (for example, when an executing program is in an infinite loop)
To kill a job running in the foreground, type ^C (control c). For example, run
% sleep 100
^C
To kill a suspended or background process, type
% kill %jobnumber
For example, run
% sleep 100 &
% jobs
If it is job number 4, type
% kill %4
To check whether this has worked, examine the job list again to see if the process has been removed.

ps (process status)

Alternatively, processes can be killed by finding their process numbers (PIDs) and using kill PID_number
% sleep 1000 &
% ps
PID TT S TIME COMMAND
20077 pts/5 S 0:05 sleep 1000
21563 pts/5 T 0:00 netscape
21873 pts/5 S 0:25 nedit
To kill off the process sleep 1000, type
% kill 20077
and then type ps again to see if it has been removed from the list.
If a process refuses to be killed, uses the -9 option, i.e. type
% kill -9 20077
Note: It is not possible to kill off other users' processes !!!

Summary

Command Meaning
ls -lag list access rights for all files
chmod [options] file change access rights for named file
command & run command in background
^C kill the job running in the foreground
^Z suspend the job running in the foreground
bg background the suspended job
jobs list current jobs
fg %1 foreground job number 1
kill %1 kill job number 1
ps list current processes
kill 26152 kill process number 26152

No hay comentarios.:

Publicar un comentario

Tor vs VPN

Cada día que pasa los internautas hacen un uso más intensivo de tecnologías como por ejemplo VPN y Tor. Además también están más con...